About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SPIE Advanced Lithography 2022
Conference paper
Vertical Travelling Scatterometry for Metrology on Fully Integrated Devices
Abstract
In this work, a novel spectral interferometry technique called vertical travelling scatterometry (VTS) is introduced, demonstrated, and discussed. VTS utilizes unique information from spectral interferometry and enables solutions for applications that are infeasible with traditional scatterometry approaches. The technique allows for data filtering related to spectral information from buried layers, which can then be ignored in the optical model. Therefore, using VTS, selective measurements of the topmost part of an arbitrarily complex stack are possible within a single metrology step. This methodology helps to overcome geometrical complexities and allows focusing on parameters of interest through dramatically simplified optical modelling. Such model simplifications are specifically desired for back-end-of-line applications. Three examples are discussed in this paper: monitoring (i) critical dimensions of a first metal level on top of nanosheet gate-all-around transistor structures, (ii) the thickness of an interlayer dielectric above embedded memory in the active area, and (iii) critical dimensions of trenches on top of tall stacks in the micrometer range comprising many layered dielectrics. It was found that, in all three cases, data filtering through VTS allowed for a simple optical model capable of delivering parameters of interest. The validity and accuracy of the VTS solution results were confirmed by extensive reference metrology obtained by traditional scatterometry, scanning electron microscopy, and transmission electron microscopy.