About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
On the retention time distribution of dual-channel vertical DRAM technologies
Abstract
In this paper, we discuss unique opportunities in vertical transistor DRAM technology for retention time optimization. By fully utilizing the asymmetric vertical device design, we demonstrate that shallow Arsenic bitline junction, reduced buried strap outdiffusion, and locally lowered p-well concentration can be incorporated in vertical DRAM transistors to pave the scaling path without degrading retention time. A methodology to probe storage node side leakage current by the use of gated-diode measurements is established. Various mechanisms that impact retention time distribution are discussed. Furthermore, we demonstrate that the degradation of tail retention time due to high junction electric field can be minimized by aggressively lowering the junction depletion volume and defect levels.