About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Monolithic integration of in-plane hybrid III-V/Si photonic devices
Abstract
Efficient active devices for light emission are the major missing piece in the otherwise highly advanced and low-cost silicon photonics platform. III-V semiconductors would be ideally suited for this; especially monolithic integration of the III-V material is challenging but ultimately desirable for scalable integrated circuits. Here we focus on integrated hybrid III-V/Si light emitters achieved using an integration technique called template-assisted selective epitaxy (TASE). This method relies on selective replacement of a prepatterned silicon structure with III-V material and thereby achieves self-aligned and in-plane monolithic integration of III-Vs on silicon. We discuss light emitters based on hybrid III-V/Si photonic crystal structures and highlight the benefits of locally placing the active material with high overlap to the photonic mode. This opens a new path towards realizing fully integrated, densely packed and scalable photonic integrated circuits.