About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
VLSI Technology 2012
Conference paper
Advanced modeling and optimization of high performance 32nm HKMG SOI CMOS for RF/analog SoC applications
Abstract
We demonstrate advanced modeling and optimization of 32nm high-K metal gate (HKMG) SOI CMOS technology for high-speed digital and RF/analog system-on-chip applications. To enable high-performance RF/analog circuit design, we present challenging device modeling features and their enhancements. At nominal L poly, floating-body NFET and PFET demonstrate peak f T of 300GHz and fMAX of higher than 350GHz with excellent model-to-hardware accuracy. For precision analog circuit design, body-contacted (BC) FETs and various passives are offered, and their performance and modeling accuracy are co-optimized to push the technology limit and achieve state-of-the-art circuits, e.g., 28Gb/s serial link transceiver and LC-tank VCO operating at higher than 100GHz. © 2012 IEEE.