About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Two-view feature generation model for semi-supervised learning
Abstract
We consider a setting for discriminative semi-supervised learning where unlabeled data are used with a generative model to learn effective feature representations for discriminative training. Within this framework, we revisit the two-view feature generation model of co-training and prove that the optimum predictor can be expressed as a linear combination of a few features constructed from unlabeled data. From this analysis, we derive methods that employ two views but are very different from co-training. Experiments show that our approach is more robust than co-training and EM, under various data generation conditions.
Related
Conference paper
Actor conditioned attention maps for video action detection
Conference paper