About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEDM 2019
Conference paper
Sub-Thermionic Scalable III-V Tunnel Field-Effect Transistors Integrated on Si (100)
Abstract
We present scalable III-V heterojunction tunnel FETs fabricated using a Si CMOS-compatible FinFET process flow and integrated on Si (100) substrates. The tunneling junction is fabricated through self-aligned selective p+ GaAsSb raised source epitaxial regrowth on an InGaAs channel. Similarly, the drain is formed by an n+ InGaAs regrowth. The Si CMOS-compatible fabrication process includes a self-aligned replacement metal gate module, high-k/metal gate, scaled device dimensions and doped extensions, enabling high junction alignment accuracy. The devices exhibit a minimum subthreshold slope of 47 mV/decade, an ION of 1.5 μA/μm at IOFF = 1 nA/μm and VDD = 0.3 V, and I60 of 10 nA/μm. This is the first demonstration of sub-60 mV/decade switching in heterostructure TFETs on Si (100), showing the strong promise of the technology for future advanced logic nodes aiming at low-power applications.