About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Restructuring exponential family mixture models
Abstract
Variational KL (varKL) divergence minimization was previously applied to restructuring acoustic models (AMs) using Gaussian mixture models by reducing their size while preserving their accuracy. In this paper, we derive a related varKL for exponential family mixture models (EMMs) and test its accuracy using the weighted local maximum likelihood agglomer-ative clustering technique. Minimizing varKL between a reference and a restructured AM led previously to the variational expectation maximization (varEM) algorithm; which we extend to EMMs. We present results on a clustering task using AMs trained on 50 hrs of Broadcast News (BN). EMMs are trained on fMMI-PLP features combined with frame level phone posterior probabilities given by the recently introduced sparse representation phone identification process. As we reduce model size, we test the word error rate using the standard BN test set and compare with baseline models of the same size, trained directly from data. © 2010 ISCA.