Martin Charles Golumbic, Renu C. Laskar
Discrete Applied Mathematics
We introduce two general methods for 0-1 program reformulation. Our first method generalizes coefficient reduction, our second method generalizes lifting. Together they provide a unifying interpretation of many previously described automatic reformulation methods. The particular model structures that we consider are individual knapsack constraints, pairs of knapsack constraints, clique and cover induced inequalities, variable upper bounding constraints and capacity expansion constraints. We describe several easy applications of our reformulation procedures. Some computational experience is reported, including the currently best known results on a well-known 147 × 2655 benchmark problem. © 1993.
Martin Charles Golumbic, Renu C. Laskar
Discrete Applied Mathematics
F.M. Schellenberg, M. Levenson, et al.
BACUS Symposium on Photomask Technology and Management 1991
I.K. Pour, D.J. Krajnovich, et al.
SPIE Optical Materials for High Average Power Lasers 1992
Igor Devetak, Andreas Winter
ISIT 2003