William Hinsberg, Joy Cheng, et al.
SPIE Advanced Lithography 2010
We present a fast algorithm for approximate canonical correlation analysis (CCA). Given a pair of tall-and-thin matrices, the proposed algorithm first employs a randomized dimensionality reduction transform to reduce the size of the input matrices, and then applies any CCA algorithm to the new pair of matrices. The algorithm computes an approximate CCA to the original pair of matrices with provable guarantees while requiring asymptotically fewer operations than the state-of-the-art exact algorithms.
William Hinsberg, Joy Cheng, et al.
SPIE Advanced Lithography 2010
Moutaz Fakhry, Yuri Granik, et al.
SPIE Photomask Technology + EUV Lithography 2011
Fernando Martinez, Juntao Chen, et al.
AAAI 2025
F. Odeh, I. Tadjbakhsh
Archive for Rational Mechanics and Analysis