About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
INFORMS 2022
Invited talk
Efficient Algorithm For Solving Robust Counterparts Of LP Problems Under Budgeted Uncertainty
Abstract
We consider the case of an uncertain linear optimization problem subject to budgeted uncertainty, meaning the uncertain parameters are dependent. Such uncertainty occurs in many real-life scenarios. Moreover, it is used in a standard approximation of scalar chance constraints. To create a tractable robust counterpart for the case of budgeted uncertainty we need to introduce many additional variables and constraints to the original problem, which may render it too large. However, many of these are typically inactive at the optimal robust solution. We present a simplex based algorithm that finds an optimal robust solution with minimal number of additional variables and constraints.