About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Dynamic features in the linear domain for robust automatic speech recognition in a reverberant environment
Abstract
Since the MFCC are calculated from logarithmic spectra, the delta and delta-delta are considered as difference operations in a logarithmic domain. In a reverberant environment, speech signals have trailing reverberations, whose power is plotted as a long-term exponential decay. This means the logarithmic delta value tends to remain large for a long time. This paper proposes a delta feature calculated in the linear domain, due to the rapid decay in reverberant environments. In an experiment using an evaluation framework (CENSREC-4), significant improvements were found in reverberant situations by simply replacing the MFCC dynamic features with the proposed dynamic features. Copyright © 2009 ISCA.