Cellular microarrays for use with capillary-driven microfluidics
Abstract
We present a method for the facile arraying of cells on microstructured substrates which should be suitable for cellular assays in autonomous microfluidic capillary systems (CSs). The CSs, which were designed and microfabricated in Si, have various microfluidic functional elements including reaction chambers wherein cellular arrays are located. Two methods for arraying the cells were explored. In the first method, a hydrophobic alkanethiol was microcontact-printed on the bottom surface of a microfluidic reaction chamber. The subsequent adsorption of protein-repellent alkanethiols around the printed areas and the deposition from solution of fibronectin (FN) on the hydrophobic areas resulted in an adhesive pattern for the attachment of living human breast cancer cells. This method was limited by the formation of cellular clusters, which proved difficult to remove selectively. The second method employed a poly(dimethylsiloxane) elastomer having oval recessed microstructures. The selective coating of the inner walls of the ovals with FN and the blocking of the mesas around the ovals with bovine serum albumin (BSA) permitted single or multiple cells to be arrayed depending on the size of the ovals. The possibility of sealing CSs with cells arrayed on poly(dimethylsiloxane) may provide a versatile platform for high-throughput experimentation down to the single-cell level. [Figure not available: see fulltext.] © 2007 Springer-Verlag.