Publication
RecSys 2010
Conference paper

Who is talking about what: Social map-based recommendation for content-centric social websites

View publication

Abstract

Content-centric social websites, such as discussion forums and blog sites, have flourished during the past several years. These sites often contain overwhelming amounts of information that are also being updated rapidly. To help users locate their interests at such sites (e.g., interesting blogs to read or discussion forums to join), researchers have developed a number of recommendation technologies. However, it is difficult to make effective recommendations for new users (a.k.a. the cold start problem) due to a lack of user information (e.g., p and interests). Furthermore, the complexity of recommendation algorithms often prevents users from comprehending let alone trusting the recommended results. To tackle the above two challenges, we are building a social map-based recommender system called Pharos. A social map summarizes users' content-related social behavior over time (e.g., reading, writing, and commenting behavior during the past week) as a set of latent communities. Each community is characterized by the theme of the content being discussed and the key people involved. By discovering, ranking, and displaying the most "popular" latent communities, Pharos creates a visual social map of a website. This enables new users to obtain a quick overview of the site, alleviating the cold start problem. Furthermore, we use the social map as a context to help explain Pharos-recommended content and people. Users can also interactively explore the social map to locate their interested content or people that are not being explicitly recommended, compensating for the imperfection in the recommendation algorithms. We have deployed Pharos within our company and our preliminary evaluation shows the usefulness of Pharos. Copyright 2010 ACM.

Date

Publication

RecSys 2010