Using Nesting to Push the Limits of Transactional Data Structure Libraries
Abstract
Transactional data structure libraries (TDSL) combine the ease-of-programming of transactions with the high performance and scalability of custom-tailored concurrent data structures. They can be very efficient thanks to their ability to exploit data structure semantics in order to reduce overhead, aborts, and wasted work compared to general-purpose software transactional memory. However, TDSLs were not previously used for complex use-cases involving long transactions and a variety of data structures. In this paper, we boost the performance and usability of a TDSL, towards allowing it to support complex applications. A key idea is nesting. Nested transactions create checkpoints within a longer transaction, so as to limit the scope of abort, without changing the semantics of the original transaction. We build a Java TDSL with built-in support for nested transactions over a number of data structures. We conduct a case study of a complex network intrusion detection system that invests a significant amount of work to process each packet. Our study shows that our library outperforms publicly available STMs twofold without nesting, and by up to 16x when nesting is used.