About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SPIE Advanced Lithography 2017
Conference paper
Unexpected impact of RIE gases on lithographic films
Abstract
Successful pattern transfer from the photoresist into the substrate depends on robust layers of lithographic films. Typically, an alternating sequence of inorganic (most often Si containing) and organic hardmask (HM) materials is used. Pattern transfer occurs then by using reactive ion etch (RIE) chemistry that is selective to one particular layer (such as: flurorinated RIE for Si HM). The impact of these RIE gases onto the layers acting as hardmask for the layer to be etched is typically neglected, except for known sputtering effects. We found that components of the RIE gases can penetrate deep into the "inert" layers and significantly modify them. For example, nitrogen used as component to etch spin-on carbon layers was found to travel up to 70 nm deep into Si HM materials and create layers with different material properties within this film. The question is being raised and discussed to which extent this atom implantation may impact the pattern transfer of the ever shrinking features.