W.E. Bron, R.W. Dreyfus
Physical Review Letters
Energy levels of OH- in KCl crystals are evaluated from transitions due to resonant absorption of electromagnetic energy. These transitions are interpreted in a consistent way through a model in which the OH- moves in a 3-dimensional set of harmonic potentials. With respect to the lowest set of energy levels, i.e., those due to tunneling, microwave absorption measurements show that the splitting factor equals 5.5±1.1 kMc/sec and the apparent dipole moment of this system equals 3.3±0.6 Debye units 0.69±0.12. Furthermore, a combination of the present microwave absorption results with infrared spectra shows that the center of mass of the OH- ion is displaced 0.3 from the halide lattice site. Before carrying out the above calculations, the effects of actual experimental conditions upon microwave-power absorption were evaluated. Such evaluation, including theoretical verification, gives the following results: Saturation of the microwave transitions can be readily achieved in a re-entrant cavity. From this effect, the relaxation time is shown to be > 10-7 sec at 1.4°K and is limited by single-phonon interactions in the 1.4 to 6°range. Phonon interactions produce negligible broadening below 6°K. OH- concentrations 20 ppm lead to line broadening via a simple (electrostatic) dipole-dipole interaction. In samples with ≤1.4 ppm of OH- ions, the linebreadth is due to the (∼107 dyne/cm2) stress of grown-in dislocations. Having established the above facts, their deleterious effects were minimized before fitting the data with our model. © 1967 The American Physical Society.
W.E. Bron, R.W. Dreyfus
Physical Review Letters
R.W. Dreyfus, R. Srinivasan
CLEO 1987
R.W. Dreyfus, R.J. von Gutfeld
CLEO 1989
R.E. Walkup, R.W. Dreyfus, et al.
Colloque International du CNRS 1982