Publication
ICPR 2010
Conference paper

Transfer of supervision for improved address standardization

View publication

Abstract

Address Cleansing is very challenging, particularly for geographies with variability in writing addresses. Supervised learners can be easily trained for different data sources. However, training requires labeling large corpora for each data source which is time consuming and labor intensive to create. We propose a method to automatically transfer supervision from a given labeled source to a target unlabeled source using a hierarchical dirichlet process. Each dirichlet process models data from one source. The shared component distribution across these dirichlet processes captures the semantic relation between data sources. A feature projection on the component distributions from multiple sources is used to transfer supervision. © 2010 IEEE.

Date

Publication

ICPR 2010