About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Toward locality-aware scheduling for containerized cloud services
Abstract
The state-of-the-art scheduler of containerized cloud services considers load-balance as the only criterion and neglects many others such as application performance. In the era of Big Data, however, applications have evolved to be highly data-intensive thus perform poorly in existing systems. This particularly holds for Platform-as-a-Service environments that encourage an application model of stateless application instances in containers reading and writing data to services storing states, e.g., key-value stores. To this end, this work strives to improve today's cloud services by incorporating sensitivity to both load-balance and application performance. We built and analyzed theoretical models that respect both dimensions, and unlike prior studies, our model abstracts the dilemma between load-balance and application performance into an optimization problem and employs a statistical method to meet the discrepant requirements. Using heuristic algorithms and approaches we try to solve the abstracted problems. We implemented the proposed approach in Diego (an open-source cloud service scheduler) and demonstrate that it can significantly boost the performance of containerized applications while preserving a relatively high load-balance.