About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber
Abstract
Using vacuum process, we fabricated Cu2ZnSnS4 solar cells with 8.4% efficiency, a number independently certified by an external, accredited laboratory. This is the highest efficiency reported for pure sulfide Cu2ZnSnS4 prepared by any method. Consistent with literature, the optimal composition is Cu-poor and Zn-rich despite the precipitation of secondary phases (e.g., ZnS). Despite a very thin absorber thickness (~600 nm), a reasonably good short-circuit current was obtained. Time-resolved photoluminescence measurements suggest a minority carrier-diffusion length on the order of several hundreds of nanometers and relatively good collection of photo-carriers across the entire absorber thickness. Copyright © 2011 John Wiley & Sons, Ltd.