Surface initiated polymer thin films for the area selective deposition and etching of metal oxides
Abstract
The area selective growth of polymers and their use as inhibiting layers for inorganic film depositions may provide a valuable self-aligned process for fabrication. Polynorbornene (PNB) thin films were grown from surface-bound initiators and show inhibitory properties against the atomic layer deposition (ALD) of ZnO and TiO2. Area selective control of the polymerization was achieved through the synthesis of initiators that incorporate surface-binding ligands, enabling their selective attachment to metal oxide features versus silicon dielectrics, which were then used to initiate surface polymerizations. The subsequent use of these films in an ALD process enabled the area selective deposition (ASD) of up to 39 nm of ZnO. In addition, polymer thickness was found to play a key role, where films that underwent longer polymerization times were more effective at inhibiting higher numbers of ALD cycles. Finally, while the ASD of a TiO2 film was not achieved despite blanket studies showing inhibition, the ALD deposition on polymer regions of a patterned film produced a different quality metal oxide and therefore altered its etch resistance. This property was exploited in the area selective etch of a metal feature. This demonstration of an area selective surface-grown polymer to enable ASD and selective etch has implications for the fabrication of both micro- and nanoscale features and surfaces.