About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Some efficient optimization methods for solving the security-constrained optimal power flow problem
Abstract
The security-constrained optimal power flow problem considers both the normal state and contingency constraints, and it is formulated as a large-scale nonconvex optimization problem. We propose a global optimization algorithm based on Lagrangian duality to solve the nonconvex problem to optimality. As usual, the global approach is often time-consuming, thus, for practical uses when dealing with a large number of contingencies, we investigate two decomposition algorithms based on Benders cut and the alternating direction method of multipliers. These decomposition schemes often generate solutions with a smaller objective function values than those generated by the conventional approach and very close to the globally optimal points. © 1969-2012 IEEE.
Related
Conference paper
Interpretable Clustering via Multi-Polytope Machines
Conference paper