About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Slew-rate monitoring circuit for on-chip process variation detection
Abstract
The need for efficient and accurate detection schemes to assess the impact of process variations on the parametric yield of integrated circuits has increased in the nanometer design era. In this paper, the difference of rise and fall slew is presented as another process-variation metric along with the delay in determining the relative mismatch between the drive strengths of nMOS and pMOS devices. The importance of considering both of these metrics is illustrated, and a new slew-rate monitoring circuit is presented for measuring the difference of rise and fall slew of a signal on the critical path of a circuit. Sensitivity analysis with multiple pulses as input has also been investigated. Bias generator circuits that track nMOS and pMOS threshold voltages have been incorporated, which makes the design less susceptible to process variation. Design considerations, simulation results, and characteristics of the slew-rate monitor circuitry in a 65-nm IBM CMOS process are presented, and a sensitivity of 50 MHz/50 ps for single pulse input is achieved. The measurement sensitivity of a fabricated slew-rate monitor in a 65-nm IBM CMOS technology is 0.11 Vμ s, with 1089 pF as the output load of the slew-rate monitor. © 1993-2012 IEEE.