Publication
Machine Learning
Paper

Robust reductions from ranking to classification

Download paper

Abstract

We reduce ranking, as measured by the Area Under the Receiver Operating Characteristic Curve (AUC), to binary classification. The core theorem shows that a binary classification regret of r on the induced binary problem implies an AUC regret of at most 2r. This is a large improvement over approaches such as ordering according to regressed scores, which have a regret transform of r nr where n is the number of elements.

Date

Publication

Machine Learning