About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Reducing Spontaneous Emission in Circuit Quantum Electrodynamics by a Combined Readout/Filter Technique
Abstract
Physical implementations of qubits can be extremely sensitive to environmental coupling, which can result in decoherence. While efforts are made for protection, coupling to the environment is necessary to measure and manipulate the state of the qubit. As such, the goal of having long qubit energy relaxation times is in competition with that of achieving high-fidelity qubit control and measurement. Here, we propose a method that integrates filtering techniques for preserving superconducting qubit lifetimes together with the dispersive coupling of the qubit to a microwave resonator for control and measurement. The result is a compact circuit that protects qubits from spontaneous loss to the environment, while also retaining the ability to perform fast, high-fidelity readout. Importantly, we show the device operates in a regime that is attainable with current experimental parameters and provide a specific example for superconducting qubits in circuit quantum electrodynamics.