About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Real-time small obstacle detection on highways using compressive RBM road reconstruction
Abstract
Small objects on the road can become hazardous obstacles when driving at high speed. Detecting such obstacles is vital to guaranty the safety of self-driving car users, especially on highways. Such tasks cannot be performed using existing active sensors such as radar or LIDAR due to their limited range and resolution at long distances. In this paper we propose a technique to detect anomalous patches on the road from color images using a Restricted Boltzman Machine neural network specifically trained to reconstruct the appearance of the road. The differences between the observed and reconstructed road patches yield a more relevant segmentation of anomalies than classic image processing techniques. We evaluated our technique on texture-based synthetic datasets as well as on real video footage of anomalous objects on highways.