Wavefront and caustic surfaces of refractive laser beam shaper
David L. Shealy, John A. Hoffnagle
SPIE Optical Engineering + Applications 2007
Electrons occupying surface states on the close-packed faces of the noble metals form a two-dimensional (2D) nearly-free electron gas that can be imaged with a scanning tunneling microscope (STM). We find that Fe adatoms strongly scatter metallic surface state electrons, and so are good building blocks for constructing atomic-scale barriers to confine these electrons. The barriers ("quantum corrals") are constructed by individually positioning Fe adatoms using the tip of a cold (4K) STM. Tunneling spectroscopy performed inside of the corrals reveals discrete resonances, consistent with size quantization. A more quantitative understanding is obtained by accounting for the multiple-scattering of the surface state electrons with the corrals' constituent adatoms. This scattering is characterized by a complex phase shift which can be extracted from the electronic density pattern inside a quantum corral. © 1995.
David L. Shealy, John A. Hoffnagle
SPIE Optical Engineering + Applications 2007
Heinz Koeppl, Marc Hafner, et al.
BMC Bioinformatics
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum
T. Graham, A. Afzali, et al.
Microlithography 2000