About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
GlobalSIP 2017
Conference paper
Propensity modeling for employee Re-skilling
Abstract
Due to the rapidly changing, dynamic nature of today's economic landscape, organizations are often engaged in a continuous exercise of matching their workforce with the changing needs of the marketplace. Re-skilling offers these enterprises the ability to effectively manage and retain talent, while also satisfying business requirements. We describe an analytics-based propensity scoring model for re-skilling by combining historical employee job-role/skill records, relationships between different job-roles/skills, employee resumes, and job postings. This is used to determine the source features that are the closest to a required target skill and hence identify employees that can be easily trained for the target skill. We evaluate this approach for a representative set of target skills at a multinational with a large services/consulting arm. We show that the propensity model learnt from the combined data sources has a high accuracy that is also substantially better than that achieved by using features from job-roles or resumes alone. The performance is improved further by using an ensemble model to evaluate the propensity scores.