About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Predicting Adverse Drug Reactions on Distributed Health Data using Federated Learning
Abstract
Using electronic health data to predict adverse drug reaction (ADR) incurs practical challenges, such as lack of adequate data from any single site for rare ADR detection, resource constraints on integrating data from multiple sources, and privacy concerns with creating a centralized database from person-specific, sensitive data. We introduce a federated learning framework that can learn a global ADR prediction model from distributed health data held locally at different sites. We propose two novel methods of local model aggregation to improve the predictive capability of the global model. Through comprehensive experimental evaluation using real-world health data from 1 million patients, we demonstrate the effectiveness of our proposed approach in achieving comparable performance to centralized learning and outperforming localized learning models for two types of ADRs. We also demonstrate that, for varying data distributions, our aggregation methods outperform state-of-the-art techniques, in terms of precision, recall, and accuracy.
Related
Conference paper
Poster abstract: Resource hunting on the edge
Conference paper
Accelerating Matrix Trace Estimation by Aitken's Δ2 Process
Conference paper