About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Performance modeling of algebraic multigrid on blue Gene/Q: Lessons learned
Abstract
The IBM Blue Gene/Q represents a large step in the evolution of massively parallel machines. It features 16-core compute nodes, with additional parallelism in the form of four simultaneous hardware threads per core, connected together by a five-dimensional torus network. Machines are being built with core counts in the hundreds of thousands, with the largest, Sequoia, featuring over 1.5 million cores. In this paper, we develop a performance model for the solve cycle of algebraic multigrid on Blue Gene/Q to help us understand the issues this popular linear solver for large, sparse linear systems faces on this architecture. We validate the model on a Blue Gene/Q at IBM, and conclude with a discussion of the implications of our results. © 2012 IEEE.