About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Partitioning Low-Diameter Networks to Eliminate Inter-Job Interference
Abstract
On most supercomputers, except some torus network based systems, resource managers allocate nodes to jobs without considering the sharing of network resources by different jobs. Such network-oblivious resource allocations result in link sharing among multiple jobs that can cause significant performance variability and performance degradation for individual jobs. In this paper, we explore low-diameter networks and corresponding node allocation policies that can eliminate inter-job interference. We propose a variation to n-dimensional mesh networks called express mesh. An express mesh is denser than the corresponding mesh network, has a low diameter independent of the number of routers, and is easily partitionable. We compare structural properties and performance of express mesh with other popular low-diameter networks. We present practical node allocation policies for express mesh and fat-tree networks that not only eliminate inter-job interference and performance variability, but also improve overall performance.
Related
Conference paper
Automated multi-dimensional elasticity for streaming runtimes
Conference paper