About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Optimal real-time distributed V2G and G2V management of electric vehicles
Abstract
This paper exploits the analogy between the electrical grid and modern communication networks to implement Electric Vehicle (EV) battery charging scheduling algorithms inspired by popular communication network techniques. In preliminary works, a similar approach was used to manage the Grid-to-Vehicle (G2V) active power flows. In this paper, we extend this framework to both implement the Vehicle-to-Grid (V2G) concept and to provide reactive power compensation capabilities that do not affect charging times. The ability of the proposed algorithms to optimally share the available/desired power in a fair way, with minimum communication requirements, in a very uncertain, dynamically changing framework, is illustrated through several examples for different scenarios of interest. © 2014 © 2014 Taylor & Francis.