About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Online phase detection algorithms
Abstract
Today's virtual machines (VMs) dynamically optimize an application as it is executing, often employing optimizations that are specialized for the current execution profile. An online phase detector determines when an executing program is in a stable period of program execution (a phase) or is in transition. A VM using an online phase detector can apply specialized optimizations during a phase or reconsider optimization decisions between phases. Unfortunately, extant approaches to detecting phase behavior rely on either offline profiling, hardware support, or are targeted toward a particular optimization. In this work, we focus on the enabling technology of online phase detection. More specifically, we contribute (a) a novel framework for online phase detection, (b) multiple instantiations of the framework that produce novel online phase detection algorithms, (c) a novel client- and machine-independent baseline methodology for evaluating the accuracy of an online phase detector, (d) a metric to compare online detectors to this baseline, and (e) a detailed empirical evaluation, using Java applications, of the accuracy of the numerous phase detectors. © 2006 IEEE.