About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Online feedback-directed optimization of Java
Abstract
This paper describes the implementation of an online feedback-directed optimization system. The system is fully automatic; it requires no prior (offline) profiling run. It uses a previously developed low-overhead instrumentation sampling framework to collect control flow graph edge profiles. This profile information is used to drive several traditional optimizations, as well as a novel algorithm for performing feedback-directed control flow graph node splitting. We empirically evaluate this system and demonstrate improvements in peak performance of up to 17% while keeping overhead low, with no individual execution being degraded by more than 2% because of instrumentation.