About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SMARTCOMP 2019
Conference paper
On data summarization for machine learning in multi-organization federations
Abstract
Machine learning is a promising technology for many modern applications. To train an effective machine learning model, a large amount of data is required. However, data may be created in different organizations and sharing data across organizational boundaries is difficult due to privacy concerns and communication bandwidth limitations. Data summarization is a technique for reducing the amount of data that needs to be shared, while preserving characteristics in the data that are useful for training machine learning models. In this paper, we present an overview of data summarization techniques, which can be useful for machine learning across organizational boundaries. We also discuss some possible applications related to these data summarization techniques and challenges for future research.