About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
On-chip timing uncertainty measurements on IBM microprocessors
Abstract
Timing uncertainty in microprocessors is comprised of several sources including PLL jitter, clock distribution skew and jitter, across chip device variations, and power supply noise. The on-chip measurement macro called SKITTER (SKew+jITTER) was designed to measure timing uncertainty from all combined sources by measuring the number of logic stages that complete in a cycle. This measure of completed delay stages has proven to be a very sensitive monitor of power supply noise, which has emerged as a dominant component of timing uncertainty. This paper describes the Skitter measurement experiences of several IBM microprocessors including PPC970MP, XBOX360 TM, CELL Broadband EngineTM, and POWER6 TM microprocessors running different workloads. © 2008 IEEE.
Related
Conference paper
Unassisted true analog neural network training chip
Conference paper