About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
COBEP/SPEC 2015
Conference paper
Modeling and multi-objective optimization of 2.5D inductor-based Fully Integrated Voltage Regulators for microprocessor applications
Abstract
This work presents the modeling and the multi-objective optimization of a 2.5D inductor-based Fully Integrated Voltage Regulator (FIVR) with respect to efficiency η and/or chip area power density α, i.e. based on the η-α-Pareto-front, for microprocessor applications. The Voltage Regulator consists of a four-phase interleaved buck converter operated in Continuous Conduction Mode (CCM). The rated power of the considered converter is 1W, and input and output voltages are constant and equal to Vin = 1.7V and Vout = 0.85V. The optimization employs analytical models for the switches, which reside on chip and are manufactured in a 32nm CMOS SOI process, and for the passive components, i.e. racetrack inductors with magnetic core material and deep-trench capacitors that are fabricated in a silicon interposer. The optimization procedure considers thermal aspects and disregards solutions that lead to excessive component temperatures. According to the optimization results, either high efficiencies, greater than 90%, or high area power densities, with chip power densities greater than 20W/mm2 and interposer power densities higher than 1.5W/mm2 are achievable. The optimized design point, selected from the η-α-Pareto-front, features an efficiency of 90.1%, interposer power density of 0.309W/mm2, and a chip power density of 27.4W/mm2.