About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Magnetic interaction between surface-engineered rare-earth atomic Spins
Abstract
We report the ab-initio study of rare-earth adatoms (Gd) on an insulating surface. This surface is of interest because of previous studies by scanning tunneling microscopy showing spin excitations of transition-metal adatoms. The present work is the first study of rare-earth spin-coupled adatoms, as well as the geometry effect of spin coupling and the underlying mechanism of ferromagnetic coupling. The exchange coupling between Gd atoms on the surface is calculated to be antiferromagnetic in a linear geometry and ferromagnetic in a diagonal geometry. We also find that the Gd dimers in these two geometries are similar to the nearest-neighbor and the next-nearest-neighbor Gd atoms in GdN bulk. We analyze how much direct exchange, superexchange, and Ruderman-Kittel-Kasuya-Yosida interactions contribute to the exchange coupling for both geometries by additional first-principles calculations of related model systems.