A testing platform for on-drone computation
Wang Zhou, Dhruv Nair, et al.
ICCD 2015
We present a portable optical spectrometer for fugitive emissions monitoring of methane (CH4). The sensor operation is based on tunable diode laser absorption spectroscopy (TDLAS), using a 5 cm open path design, and targets the 2ν3 R(4) CH4 transition at 6057.1 cm-1 (1651 nm) to avoid cross-talk with common interfering atmospheric constituents. Sensitivity analysis indicates a normalized precision of 2.0 ppmv·Hz-1/2, corresponding to a noise-equivalent absorbance (NEA) of 4.4×10-6 Hz-1/2 and minimum detectible absorption (MDA) coefficient of αmin = 8.8×10-7 cm-1·Hz-1/2. Our TDLAS sensor is deployed at the Methane Emissions Technology Evaluation Center (METEC) at Colorado State University (CSU) for initial demonstration of single-sensor based source localization and quantification of CH4 fugitive emissions. The TDLAS sensor is concurrently deployed with a customized chemi-resistive metal-oxide (MOX) sensor for accuracy benchmarking, demonstrating good visual correlation of the concentration time-series. Initial angle-ofarrival (AOA) results will be shown, and development towards source magnitude estimation will be described.
Wang Zhou, Dhruv Nair, et al.
ICCD 2015
William M. J. Green, Eric J. Zhang, et al.
OFC 2019
Chu C. Teng, Eric J. Zhang, et al.
CLEO 2018
Eric J. Zhang, Yves Martin, et al.
SPIE DCS 2019