About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review A
Paper
Levy-Lieb embedding of density-functional theory and its quantum kernel: Illustration for the Hubbard dimer using near-term quantum algorithms
Abstract
The constrained-search formulation of Levy and Lieb provides a concrete mapping from N-representable densities to the space of N-particle wave functions and explicitly defines the universal functional of density-functional theory. We numerically implement the Levy-Lieb procedure for a paradigmatic lattice system, the Hubbard dimer, using a modified variational quantum eigensolver approach. We demonstrate density variational minimization using the resulting hybrid quantum-classical scheme featuring real-time computation of the Levy-Lieb functional along the search trajectory. We further illustrate a fidelity-based quantum kernel associated with the density to pure-state embedding implied by the Levy-Lieb procedure and employ the kernel for learning observable functionals of the density. We study the kernel's ability to generalize with high accuracy through numerical experiments on the Hubbard dimer.