About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
APS March Meeting 2023
Talk
Large anomalous Nernst effect in canted antiferromagnet YbMnBi2
Abstract
A large anomalous Nernst effect (ANE) is crucial for thermoelectric energy conversion applications because the associated unique transverse geometry facilitates module fabrication. Topological ferromagnets with large Berry curvatures show large ANEs; however, they face drawbacks such as strong magnetic disturbances and low mobility due to high magnetization. , as a canted antiferromagnet, surprisingly shows a large ANE conductivity of \ that surpasses large values observed in other ferromagnets (3–5 A m−1 K−1). The canted spin structure of Mn guarantees a non-zero Berry curvature, but generates only a weak magnetization three orders of magnitude lower than that of general ferromagnets. The heavy Bi with a large spin–orbit coupling enables a large ANE and low thermal conductivity, whereas its highly dispersive px/y orbitals ensure low resistivity. The high anomalous transverse thermoelectric performance and extremely small magnetization make an excellent candidate for transverse thermoelectrics.