About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
EMNLP 2023
Conference paper
Knowledge Distillation ≈ Label Smoothing: Fact or Fallacy?
Abstract
Originally proposed as a method for knowledge transfer from one model to another, some recent studies have suggested that knowledge distillation (KD) is in fact a form of regularization. Perhaps the strongest argument of all for this new perspective comes from its apparent similarities with label smoothing (LS). Here we re-examine this stated equivalence between the two methods by comparing the predictive confidences of the models they train. Experiments on four text classification tasks involving models of different sizes show that: (a) In most settings, KD and LS drive model confidence in completely opposite directions, and (b) In KD, the student inherits not only its knowledge but also its confidence from the teacher, reinforcing the classical knowledge transfer view.