About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Keep it simple stupid! A non-parametric kernel regression approach to forecast travel speeds
Abstract
The approach taken by the second place winner of the TRANSFOR prediction challenge is presented. The challenge involves forecasting travel speeds on two arterial links in Xi'an City in China for two five hour periods on a single day. Travel speeds are measured from trajectory information on probe vehicles from a fleet of vehicles for a large sub-area of the city. After experimenting with several deep learning methods, we settle on a simple non-parametric kernel regression approach. The method, borrowed from previous work in fixed route transit predictions, formalizes the intuition that in urban systems most failure patterns are recurrent. Our choice is supported by test results where the method outperformed all evaluated neural architectures. The results suggest simple methods are very competitive, particularly considering the high lifecycle cost of deep learning models.