About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
QCE 2020
Conference paper
Iterative quantum phase estimation with optimized sample complexity
Abstract
In this work we consider Kitaev's algorithm for quantum phase estimation. We analyze the use of phase shifts that simplify the estimation of successive bits in the estimation of unknown phase , By using increasingly accurate shifts we reduce the number of measurements to the point where only a single measurement is needed for each additional bit. This results in an algorithm that can estimate to m + 2 bits of accuracy with probability at least 1- using N + m measurements, where N is a quantity that depends only on and the particular sampling algorithm. We present different sampling algorithms and study the exact number of measurements needed through careful numerical evaluation, and provide theoretical bounds and numerical values for N.