About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NeurIPS 2024
Conference paper
Interpolating Item and User Fairness in Multi-Sided Recommendations
Abstract
Today's online platforms heavily lean on algorithmic recommendations for bolstering user engagement and driving revenue. However, these recommendations can impact multiple stakeholders simultaneously -- the platform, items (sellers), and users (customers) -- each with their unique objectives, making it difficult to find the right middle ground that accommodates all stakeholders. To address this, we introduce a novel fair recommendation framework, Problem (FAIR), that flexibly balances multi-stakeholder interests via a constrained optimization formulation. We next explore Problem (FAIR) in a dynamic online setting where data uncertainty further adds complexity, and propose a low-regret algorithm FORM that concurrently performs real-time learning and fair recommendations, two tasks that are often at odds. Via both theoretical analysis and a numerical case study on real-world data, we demonstrate the efficacy of our framework and method in maintaining platform revenue while ensuring desired levels of fairness for both items and users.