About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Machine Translation
Paper
Improving MT post-editing productivity with adaptive confidence estimation for document-specific translation model
Abstract
We present an adaptive translation confidence estimation method to predict the human-targeted translation error rate for a document-specific machine translation model. We show the effectiveness of our method that uses features derived from the internal translation decoding process and from the source sentence analysis, in both classification and regression estimate of MT quality. By dynamically training the confidence model for the document-specific MT model, we are able to achieve consistency and prediction quality across multiple documents, demonstrated by the higher correlation coefficient and F scores in finding good sentences. Furthermore, the proposed method is applied to an English–Japanese MT post-editing field study. A strong correlation between our prediction and human selection is observed with a 10 % increase in the productivity of human translators.