About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Microelectronic Engineering
Paper
Impact of high-κ and SiO2 interfacial layer thickness on low-frequency (1/f) noise in aggressively scaled metal gate/HfO2 n-MOSFETs: role of high-κ phonons
Abstract
The effect of high-κ (tHfO2) and interfacial layer thickness (tIL) on the low-frequency (LF) drain current noise is studied in n-MOSFETs with HfO2 gate oxide and TiN metal gate. While a 1/f type spectrum is observed, the dominant noise mechanism is found to be mobility fluctuations. The variation in Hooge's parameter αH is studied and the results are correlated with channel electron mobility (μ). The physical origin of noise fluctuations is then determined from the comparison. The results show that high-κ phonon scattering is likely the dominant source for 1/f noise in aggressively scaled HfO2-metal gate devices. The devices meet the ITRS specification and the selection of tIL becomes significant for use in analog and mixed signal based applications. © 2007 Elsevier B.V. All rights reserved.