About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Image sensitive spectral response of semiconductor random network lasers
Abstract
We experimentally study the spectral lasing response of on-chip InP network random lasers under illumination of different input image shapes. Deep-learning models have become increasingly omipresent throughout society. However, they are blighted by exponentially soaring energy demands. Physical implementations of neural networks are emerging as an attractive solution for performing machine learning more energy-efficiently than conventional GPU hardware by mimicking the complex structure of biological brains. However, not many platforms which can natively receive unprocessed raw image data as light have so far been demonstrated - a highly-appealing approach which deserves attention. Here, we demonstrate an optical system with spectral response to image input. Specifically, we report on designable solid-state InP network random lasers, based on random graph networks etched into wafer-bonded InP. The networks lase over a broad wavelength range and show a plethora of modes formed by multiple scattering paths. These modes are highly sensitive to illumination patterns due to their unique and highly overlapping spatial distribution.
Related
Conference paper
Unassisted true analog neural network training chip
Conference paper