Compression for data archiving and backup revisited
Corneliu Constantinescu
SPIE Optical Engineering + Applications 2009
In homogeneous chemical vapor deposition (HOMOCVD), reactive radicals are created in a relatively unreactive gas maintained at a much higher temperature than that of the substrate, allowing films to be deposited at low growth temperatures. In this paper, we review the basic aspects of the method and its application to amorphous hydrogenated silicon and germanium growth. HOMOCVD chemistry and reactor dynamics are treated to illustrate the most important parameters of the method, and to examine its potential usefulness in “low temperature processing.” In this context, the connection between HOMOCVD and current silicon CVD growth models is also explored. © 1984, American Vacuum Society. All rights reserved.
Corneliu Constantinescu
SPIE Optical Engineering + Applications 2009
G. Will, N. Masciocchi, et al.
Zeitschrift fur Kristallographie - New Crystal Structures
Shiyi Chen, Daniel Martínez, et al.
Physics of Fluids
Arvind Kumar, Jeffrey J. Welser, et al.
MRS Spring 2000