About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Head-shoulder based gender recognition
Abstract
This paper proposes a novel gender recognition method based on the head-shoulder part of human body. The head-shoulder area contains much information that could be cues to infer the gender of a person, such as hair-style, face, neckline style and so on. A rich high-dimensional feature descriptor is designed to extract gradient, texture and orientation information from the head-shoulder area, then Partial Least Squares (PLS) is employed to learn a very low dimensional discriminative subspace. Features are projected into the low dimensional subspace and linear SVM is employed to learn an efficient classification model between the male and female categories. Experimental results on a large real-world dataset demonstrate the effectiveness of the proposed method. © 2013 IEEE.
Related
Conference paper
Actor conditioned attention maps for video action detection
Conference paper