About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Conference paper
Ground from figure discrimination
Abstract
This paper proposes a new, efficient, figure from ground method. At every stage the data features are classified to either 'background' or 'unknown yet' classes, thus emphasizing the background detection task (and implying the name of the method). The sequential application of such classification stages creates a bootstrap mechanism which improves performance in very cluttered scenes. This method can be applied to many perceptual grouping cues, and an application to smoothness-based classification of edge points is given. A fast implementation using a kd-tree allows to work on large, realistic images.
Related
Conference paper
Actor conditioned attention maps for video action detection
Conference paper